Optimal Nonlinear Taxation: Two Wage-Types

Wage rates $w_2 > w_1$

- ▶ Government observes income $y(=w\ell)$, not ℓ or w
- ▶ n_1 , n_2 and $u(c, \ell)$ are common knowledge
- ▶ Common consumer budget constraint is c = y T(y)
- ▶ Government observes y and T(y), so knows c

Transform household utility:
$$v^i(c,y) \equiv u(c,y/w_i)$$
 where $v^i_c = u_c, \quad v^i_y = u_\ell/w_i$

Given (c, y) with y > 0, $\ell_1 > \ell_2$, so $y^2(c, y) > v^1(c, y)$

$$\left. \frac{dc}{dy} \right|_{v^i} = -\frac{v_y^i}{v_c^i} = -\frac{u_\ell}{u_c} \frac{1}{w_i} \implies \left. \frac{dc}{dy} \right|_{v^1} > \left. \frac{dc}{dy} \right|_{v^2}$$

(Single-crossing property) FIGURE 1

Figure 1

Incentive Compatibility (IC)

In redistributing from type-2's to type-1's, IC requires

$$v^2(c_2, y_2) \ge v^2(c_1, y_1) > v^1(c_1, y_1)$$
 for $y > 0$

This implies:

- ► Type-2's must at least as well off as type-1's in optimum
- ▶ IC becomes binding on First-Best UPF where $v^2 > v^1$
- Non-distorting taxes are possible where IC does not bind: FIGURE 2A
- ▶ If IC strictly binds, taxes must be distorting: FIGURE 2B
- ► FIGURE 2C, IC just binds

^

Figure 2A

Figure 2B

Figure 2C

Government's Optimal Income Tax Problem

Government selects a tax system T(y) to maximize an objective function subject to a budget constraint

Equivalent direct approach: Select bundles (c_1, y_1, c_2, y_2) to maximize an objective function subject to:

• Budget constraint:

$$n_1 T(y_1) + n_2 T(y_2) = n_1(y_1 - c_1) + n_2(y_2 - c_2) = R$$

• IC constraints:

$$v^2(c_2, y_2) \ge v^2(c_1, y_1)$$

 $v^1(c_1, y_1) \ge v^1(c_2, y_2)$

Households choose preferred bundle

Implement the direct solution via T(y)

Which Incentive Constraint?

Both constraints cannot be binding (Single-Crossing Property):

- ▶ When $v^2(c_2, y_2) = v^2(c_1, y_1)$, $v^1(c_1, y_1) > v^1(c_2, y_2)$
- ▶ When $v^1(c_1, y_1) = v^1(c_2, y_2)$, $v^2(c_2, y_2) > v^2(c_1, y_1)$

If government has non-negative aversion to inequality, IC on Type 2's will bind in an optimum:

$$v^2(c_2, y_2) = v^2(c_1, y_1), \quad v^1(c_1, y_1) > v^1(c_2, y_2)$$

(since First-Best outcome is between Maximin and Utilitarian where $v^1 \ge v^2$)

Notation: $\hat{v}^2(c_1, y_1)$ denotes utility of type-2 when mimicking type-1's (c, y) bundle

,

Government Pareto-Optimizing Problem

Pareto-optimizing Lagrangian expression:

$$\mathcal{L} = v^{1}(c_{1}, y_{1}) + \rho \left[v^{2}(c_{2}, y_{2}) - \overline{v}^{2} \right] + \gamma \left[v^{2}(c_{2}, y_{2}) - \widehat{v}^{2}(c_{1}, y_{1}) \right]$$

$$+ \lambda \left[n_{1}(y_{1} - c_{1}) + n_{2}(y_{2} - c_{2}) - R \right]$$
 (1)

First-order conditions:

$$v_c^1 - \gamma \hat{v}_c^2 - \lambda n_1 = 0 \tag{2}$$

$$v_y^1 - \gamma \widehat{v}_y^2 + \lambda n_1 = 0 \tag{3}$$

$$\rho v_c^2 + \gamma v_c^2 - \lambda n_2 = 0 \tag{4}$$

$$\rho v_y^2 + \gamma v_y^2 + \lambda n_2 = 0 \tag{5}$$

⇒ Point on Second-Best UPF

Implicit Marginal Tax Rate

Given T(y), type i maximizes $v^i(c, y)$ subject to budget constraint c = y - T(y), or:

$$\max_{y} \quad v^{i}(\underbrace{y - T(y)}_{c}, y)$$

First-order condition is:

$$(1 - T'(y_i))v_c^i + v_v^i = 0$$

or:

$$T'(y_i) = 1 + \frac{v_y^i}{v_c^i} \le 1$$

This is the marginal tax rate on type i

Properties of Second-Best Optimum

1. If IC not binding $(\gamma = 0)$, $T'(y_1) = T'(y_2) = 0$

FOCs yield:
$$MRS_{cy}^1 = -\frac{v_y^1}{v_c^1} = 1 = MRS_{cy}^2 = -\frac{v_y^2}{v_c^2}$$

2. Equilibrium must be a separating: $(c_1, y_1) \neq (c_2, y_2)$ From a pooling allocation, can move one bundle along 45° and make one person better off without violating constraints
—FIGURE 3—

3. Marginal tax rate on high-ability persons is zero: $T'(y_2) = 0$ Divide (5) by (4):

$$-\frac{v_y^2}{v_c^2} = 1$$

-FIGURE 4-

Figure 3

Figure 4

Properties, continued

4. If IC binding, $T'(y_1) > 0$ Divide (3) by (2):

$$-\frac{v_y^1}{v_c^1} = \frac{-\gamma \hat{v}_y^2 + \lambda n_1}{\gamma \hat{v}_c^2 + \lambda n_1} = \frac{-\frac{\hat{v}_y^2}{\hat{v}_c^2} k + 1}{k + 1}$$

where $k = \gamma \widehat{v}_c^2/(\lambda n_1) > 0$. Since $0 < -\widehat{v}_y^2/\widehat{v}_c^2 < 1$ at (c_1, y_1) ,

$$0 < -\frac{v_y^1}{v_c^1} < 1 \implies 0 < T'(y_1) < 1$$

- 5. As \overline{v}^2 is reduced, v^1 increases until Maximin solution
 - ▶ Maximin may be interior where $v^2 > v^1$ (FIGURE 5A)
 - ▶ Maximin may be corner where $\ell_1 = 0, v^2 = v^1$ (FIGURE 5B)

Properties, continued

6. Optimal implemented by many tax structures: FIGURE 6 In the optimum:

$$c_2 > c_1, \quad y_2 > y_1, \quad v^2 > v^1, \quad T(y_2) > T(y_1)$$

but

$$\frac{T(y_2)}{y_2} \ \stackrel{\geq}{<} \ \frac{T(y_1)}{y_1}$$

 \Longrightarrow Tax system can be progressive or regressive

7. Linear progressive taxation not efficient Incentive constraint not binding

a

Figure 6

More than Two Ability Types: $w_3 > w_2 > w_1$

Characteristics of optimal tax solution (Guesnerie-Seade):

- ▶ IC constraint binding on next lowest type only (FIGURE 7A)
- ► Lowest ability type(s) may not work (FIGURES 7B, 7C)
- Equilibrium may be partial pooling (FIGURE 8)
- ▶ Marginal tax rate zero at the top $(T'(y_3) = 0)$
- ▶ Marginal tax rates for i = 1, 2 between zero and one
- ▶ Optimal allocation satisfies: $c_i > c_{i-1}, \ y_i > y_{i-1}, \ v^i > v^{i-1}, \ T(y_i) > T(y_{i-1})$
- ► Tax can be progressive or regressive

Figure 7

Figure 7, Panel C

Figure 8

Continuous Wage Distribution (Mirrlees)

Distribution of abilities:

$$F(w), f(w) = F'(w), \quad w \in [\underline{w}, \overline{w}], \ \underline{w} \ge 0, \ \overline{w} \le \infty$$

Utility: u(w) = v(c(w), y(w), w)

Incentive compatibility:

$$u(w) = v(c(w), y(w), w) \ge v(c(w'), y(w'), w), \quad \forall w'$$

$$\Longrightarrow u(w) = \max_{w'} v(c(w'), y(w'), w)$$

So, applying Envelope Theorem:

$$\implies \dot{u}(w) = v_w(c(w), y(w), w)$$

This is the first-order incentive constraint (FOIC)

(An SOIC must also be satisfied: $\dot{y}(w) \ge 0$; we assume it is in what follows)

The Optimal Income Tax Problem

$$\text{Max } \int_{\underline{w}}^{\overline{w}} W \big(u(w) \big) f(w) dw \qquad (\text{SWF}) \text{ subject to}$$

$$\int_{\underline{w}}^{\overline{w}} \big(y(w) - c(w) \big) f(w) dw \geq R \qquad (\text{Budget constraint})$$

$$\dot{u}(w) = v_w \big(c(w), y(w), w \big) \qquad (\text{FOIC})$$

$$\text{But, } u(w), y(w), c(w) \text{ satisfy } u(w) = v(c(w), y(w), w) \quad \Rightarrow \\ \text{Solve for } c(w) = c \big(y(w), u(w) \big), \text{ so government problem becomes:}$$

$$\text{Max } \int_{\underline{w}}^{\overline{w}} W \big(u(w) \big) f(w) dw \qquad (\text{SWF}) \text{ subject to}$$

$$\int_{\underline{w}}^{\overline{w}} \Big(y(w) - c(y(w), u(w)) \Big) f(w) dw \geq R \qquad (\text{Budget constraint})$$

$$\dot{u}(w) = v_w \big(c(y(w), u(w)), y(w), w \big) \qquad (\text{FOIC})$$

$$y(w) \text{ is control variable, } u(w) \text{ is state variable}$$

Additively Separable Case

Utility u(w) = v(c(w), y(w), w) = u(c(w)) - h(y(w)/w), so

$$\frac{\partial c(w)}{\partial u(w)} = \frac{1}{v_c(\cdot)} = \frac{1}{u'(c(w))}; \quad \frac{\partial c(w)}{\partial y(w)} = -\frac{v_y(\cdot)}{v_c(\cdot)} = \frac{h'(\ell(w))}{wu'(c(w))}$$

Incentive constraint:

$$\dot{u}(w) = v_w(c(w), y(w), w) = h'(\ell(w))\ell(w)/w$$

Hamiltonian:
$$\mathcal{H} = W(u(w))f(w) + \lambda(y(w) - c(y(w), u(w)))f(w) + \pi(w)h'(\ell(w))\ell(w)/w$$

Necessary conditions (deleting w's):

$$\frac{\partial \mathcal{H}}{\partial y} = \lambda \left(1 - \frac{\partial c}{\partial y} \right) f + \pi \left(\frac{h'}{w^2} + \frac{\ell h''}{w^2} \right) = 0 \tag{1}$$

$$\frac{\partial \mathcal{H}}{\partial y} = W' f - \lambda \frac{\partial c}{\partial y} f = -\dot{\pi} \tag{2}$$

Transversality conditions: $\pi(\underline{w}) = \pi(\overline{w}) = 0$

Interpretation

Integrate (2) using $\pi(\overline{w}) = 0$:

$$\pi(w) = \int_{w}^{\overline{w}} \left(\frac{W'}{\lambda} - \frac{1}{u'} \right) \lambda dF < 0 \text{ for } \underline{w} < w < \overline{w}$$
 (3)

From (1), using $T' = 1 - \partial c/\partial y$:

$$T' = -\frac{\pi}{\lambda f} \left(\frac{h'}{w^2} + \frac{\ell h''}{w^2} \right) > 0 \text{ for } \underline{w} < w < \overline{w}$$

and $T'(y(\underline{w})) = T'(y(\overline{w})) = 0$, assuming no bunching (With bunching at bottom, T' > 0 at end of bunching range)

From household problem, (1 - T')u' = h'/w. From (1) and (3):

$$\frac{T'}{1-T'} = u' \int_{w}^{\overline{w}} \left(\frac{1}{u'} - \frac{W'}{\lambda}\right) dF \cdot \frac{1 + \ell h''/h'}{wf} \tag{4}$$

Quasilinear case

Let
$$u(c,\ell)=c-h(\ell)=c-\ell^{1+1/\epsilon}/(1+1/\epsilon)$$
, where $c=w\ell-T(w\ell)$

From consumer problem, we obtain $\ell = \big((1-T')w\big)^\epsilon$

Equivalently,
$$h''\ell/h'=1/\epsilon$$

Using u' = 1, (4) may be written:

$$\frac{T'}{1-T'} = \frac{1+\epsilon}{\epsilon} \cdot \frac{\int_{w}^{\overline{w}} (1-W'(\tilde{w})/\lambda) dF(\tilde{w})}{1-F(w)} \cdot \frac{1-F(w)}{wf(w)}$$
$$= A(w) \cdot B(w) \cdot C(w) \quad \text{(Diamond 1998)}$$

The first term is an efficiency term; the second is an equity term; the third captures the proportion of the population above *w*

 $T^{\prime}/(1-T^{\prime})$ is the marginal income tax rate in terms of after-tax income

Interpretation of FOCs (Kaplow 2008)

Suppose optimal income tax is in place

Perturbation of T'(y) over interval y + dy has following effects:

- ▶ Those in income interval y + dy reduce ℓ since T'(y) has risen
 - ▶ Loss of government revenue captured by $\epsilon w f(w)/(1+\epsilon)$
 - No change in their utility since marginal
- ▶ Those with income < y not affected
- ▶ For those with income > y, T'(y) unchanged, but pay increment more in taxes
 - No change in labor supply (quasilinearity)
 - ▶ There are 1 F(w) of them, each paying an increment more in taxes
 - ▶ Term B(w) is per capita value of the transfer in tax revenues from them to the government
- ▶ B(w) rises with w, C(w) may fall

Further Interpretation of FOCs (Saez 2001)

H(y) = distribution of households by y (endogenous), with density h(y) = H'(y)

Utility:

$$v(c,y) = c - rac{\left(rac{y}{w}
ight)^{1+1/e}}{1+1/\epsilon} \quad \Rightarrow \quad y = \left(1 - T'(y)
ight)^{\epsilon} w^{\epsilon+1}$$

Earnings elasticity:
$$\epsilon = \frac{dy}{d(1 - T'(y))} \frac{1 - T'(y)}{y}$$

Suppose optimal income tax is in place

Let G(y) be average social value of giving one yen to all persons with income > y (decreasing in y)

Increase T'(y) by dT' over the interval $y + \Delta y$ =

Consequences of Tax Perturbation

- For those y' > y, tax liabilities rise by dT'dy, increase in government revenue: dM = (1 H(y))dT'dy
- Loss in social welfare for those with y' > y is dW = -G(y)dM
- ► For those in y + dy, $dy = -\epsilon y dT'/(1 T')$, so tax revenue changes by T'(y)dy (no loss of welfare); reduction in government revenue is

$$dB = -\frac{\epsilon y dT'}{1 - T'} h(y) T' dy$$

▶ In an optimum, dM + dW + dB = 0, leading to:

$$\frac{T'(y)}{1-T'(y)} = \frac{1}{\epsilon} \cdot \frac{1-H(y)}{yh(y)} \cdot (1-G(y))$$

Similar interpretation as above

General Properties of Solution

- Marginal tax rate at the top zero (if distribution bounded)
- Marginal tax rate at the bottom zero unless bunching
- Marginal tax rate positive (and less that unity) in interior
- ► May be bunching at bottom (SOIC binding): marginal tax rate positive at end of bunching
- Simulations show inverted u-shape marginal tax profile, fairly flat in interior
- With quasilinear preferences and unbounded skill distribution, may be range of U-shaped marginal tax rates at upper end (Diamond)
- ► With maxi-min SWF, marginal tax rate positive at bottom and decreasing, average tax rates single-peaked ⇒
- ► Extension to extensive margin (participation): negative marginal tax rates at bottom ⇒

Maximin Case

Government problem: max $u(\underline{w})$ subject to budget: $\int (y - c(y, u)) f(w) dw = 0$ and Incentive constraint: $\dot{u} = h'(\ell)\ell/h(\ell)$.

Equivalent to max tax revenue $\int (y - c(y, u)) f(w) dw$ s.t. $u(\underline{w}) \geq \overline{u}$ and incentive constraint

Since W' = 0 for $w > \underline{w}$, solution \Longrightarrow

$$\frac{T'}{1-T'}=u'\int_{w}^{\overline{w}}\frac{dF(\tilde{w})}{u'(\tilde{w})}\cdot\frac{1+\ell h''/h'}{wf}$$

$$\implies T'(\underline{w}) > 0, \quad T'(w) \ge 0$$

Constant elasticity of labor supply case:

$$\frac{T'}{1-T'} = u' \int_{w}^{\overline{w}} \frac{dF(\tilde{w})}{u'(\tilde{w})} \cdot \frac{1+\epsilon^{-1}}{wf}$$

Interpretation

Assume single-peaked f(w) and constant elasticity ℓ

- For w below the mode, T' is decreasing
- \triangleright For w above the mode, T' is decreasing if wf is non-increasing
- If T' non-increasing in w, SOIC satisfied. Proof: from household FOC:

$$\frac{u'(c)}{h'(y/w)} = \frac{1}{(1-T')w} \quad \text{so} \quad \dot{y}, \dot{c} > 0$$

- ▶ Since $dT'(y(w))/dw = T''(y(w))\dot{y}(w)$, T'' < 0, so T(y) increasing and strictly concave
- So, if $T(y(\underline{w})) < 0$, average tax rate T(y)/y single-peaked (FIGURE)

Figure Average and marginal tax rates

Labor Supply Choices along Extensive Margin

- Work involves fixed hours; households can choose occupation and/or participation (Saez 2002; Diamond 1980)
- ▶ $i = 0, \dots, I$ occupations with fixed earnings y_i such that $y_i > y_{i-1}$, $y_0 = 0$
- $lackbox{ iny} h_i = ext{proportion of population choosing } i, \sum h_i = 1$
- $ightharpoonup c_i = y_i T_i$, where tax $T_i \geq 0$
- ▶ Occupation *i* labor supply function: $h_i(c_0, c_1, \dots, c_l)$ (taste for leisure variable)
- ▶ The government's budget: $\sum_{i=0}^{I} h_i(c_0, c_1, \dots, c_I) T_i = R$
- ▶ $g_i =$ marginal social welfare weight for persons in i, $g_i > g_{i+1}$ for $i \ge 1$, $g_0 \ \gtrless \ g_1$ (lazy vs. disabled)
- ▶ Utility quasilinear in c: $\Rightarrow \sum h_i(c_0, c_1, \dots, c_l)g_i = 1$ (Marginal yen of government revenue valued as much as additional yen distributed to all income classes: unit increase in income of all persons leaves h_i unchanged)

Participation Choice

Labor supply into
$$i$$
: $h_i(c_i - c_0)$, with $h_i'(\cdot) > 0$, and elasticity $\eta_i = (c_i - c_0)h_i'(\cdot)/h_i(\cdot)$

Let $\tau(y_i) = (T_i - T_0)/y_i$ (participation tax rate) Then, optimal tax system satisfies:

$$\frac{T_i - T_0}{c_i - c_0} = \frac{\tau(y_i)}{1 - \tau(y_i)} = \frac{1 - g_i}{\eta_i} = \frac{\text{equity effect}}{\text{efficiency effect}} \text{ for } i \ge 1$$

Proof: Increase dT_i causes

-) Di e D
- a) Direct Revenue Effect $= h_i dT_i$ with value $(1 g_i)h_i dT_i$, and b) Behavioral Effect $= dh_i = -h_i \eta_i dT_i/(c_i c_0)$ so tax loss $(T_i T_0)dh_i$

At optimum, two effects sum to zero, leading to result

Implication:

- 1) If $g_0 > g_1 > g_2 \cdots$, for some $i < i^*$, $g_i > 1$, so $T_i < T_0 < 0$ for $i < i^* \implies \mathsf{MTR} < 0$ at bottom (EITC)
- 2) Maximin: $i^* = 0$, so $g_i = 0$ for i > 0, so $T_i > T_0$

Formal Treatment of Optimal Participation Tax

- Utility quasilinear in consumption
- ▶ Utility if working: $c_i = y_i T_i$
- ▶ Utility if not working: $c_0 = -T_0 + \tilde{m}_i$
- ▶ Value of leisure \tilde{m}_i distributed by $\Gamma_i(m_i)$
- ▶ Marginal type-*i* participant: $y_i T_i = -T_0 + \hat{m}_i$
- Number of type-*i* participants: $n_i\Gamma_i(\hat{m}_i) = n_i\Gamma_i(y_i - T_i + T_0) \equiv h_i(\cdot)$
- Number of non-participants: $1 - \sum_{i>1} n_i \Gamma_i (y_i - T_i + T_0) \equiv h_0$

Government Problem

$$\mathcal{L} = \sum_{i>0} h_i (y_i - T_i + T_0) u (y_i - T_i) + \sum_{i\geq0} \int_{\hat{m}_i} u (-T_0 + m_i) d\Gamma_i(m_i)$$
$$+ \lambda \left(\sum_{i>0} h_i (y_i - T_i + T_0) T_i + \left(1 - \sum_{i>0} h_i (y_i - T_i + T_0)\right) T_0 \right)$$

FOCs with respect to
$$T_i$$
 and T_0 :

$$-h_i u'_i + \lambda (h_i - (T_i - T_0)h'_i) = 0$$
, for $i > 0$

$$-\sum_{i\geq 0} \int_{\hat{m}_i} u'_{i0} d\Gamma_i(m_i) + \lambda \left(h_0 + \sum_{i>0} (T_i - T_0)h'_i\right) = 0$$

Define
$$g_i \equiv u_i'/\lambda$$
, $g_0 \equiv \sum_{i>0} \int_{\hat{m}_i} u_{i0}' d\Gamma_i/(h_0\lambda)$

Then, these first-order conditions reduce to:

$$\frac{T_i - T_0}{c_i - c_0} = \frac{1 - g_i}{\eta_i} \ (i > 0), \quad \text{and} \quad \sum_{i > 0} h_i g_i = 1$$

Occupational Choice

Type-i can opt for occupation i-1 and earn y_{i-1} instead of y_i

Labor supply to occupation
$$i$$
 is $h_i(c_{i+1} - c_i, c_i - c_{i-1})$ with $\epsilon_i = (c_i - c_{i-1})/h_i \cdot \partial h_i(\cdot)/\partial (c_i - c_{i-1})$

Optimal tax system satisfies, for all $i \ge 1$:

$$\frac{T_i - T_{i-1}}{c_i - c_{i-1}} = \frac{1}{\epsilon_i} \left[\frac{(1 - g_i)h_i + (1 - g_{i+1})h_{i+1} + \dots + (1 - g_l)h_l}{h_i} \right]$$

(Proof involves welfare effects of dT for occupations $i, i+1, \cdots, I$) **Implications**

- ▶ Since $\sum h_i g_i = 1 = \sum h_i$, for i > 0 we have: $(1 g_i)h_i + (1 g_{i+1})h_{i+1} + \cdots + (1 g_l)h_l > 0$, so $T_i > T_{i-1}$ (MTRs > 0)
- ▶ At bottom and top,

$$\frac{T_1-T_0}{c_1-c_0}=\frac{1}{\epsilon_1}\cdot\frac{(g_0-1)h_0}{h_1}>0,\ \frac{T_I-T_{I-1}}{c_I-c_{I-1}}=\frac{1}{\epsilon_I}\cdot\frac{(1-g_I)h_I}{h_1}>0$$

Both Participation and Occupational Choice

Supply in occupation $i = h_i(c_i - c_0, c_{i+1} - c_i, c_i - c_{i-1})$

- ▶ First argument due to participation
- Last two due to occupational choice

Optimal tax systems satisfies, for $i \ge 1$:

$$\frac{T_i - T_{i-1}}{c_i - c_{i-1}} = \frac{1}{\epsilon_i h_i} \sum_{j=1}^{I} h_j \left[1 - g_j - \eta_j \frac{T_j - T_0}{c_j - c_0} \right]$$

Comparing this with occupational choice only, g_j is replaced by

$$g_j + \eta_j \frac{T_j - T_0}{c_j - c_0}$$

If η large relative to ϵ , can be negative MTR at bottom (EITC vs. NIT)

Atkinson-Stiglitz Theorem: Continuous-Wage Case

- Return to intensive-margin setting
- ▶ Goods x_i , $i = 1, \dots, n$ and labour ℓ
- ▶ Utility $u = u(x_1, \dots, x_n, \ell)$
- ▶ Invert utility to obtain $x_1 = x_1(x_2, \dots, x_n, \ell, u)$

Government can choose quantities of goods and labor subject only to resource and incentive constraints

⇒ Fully nonlinear income & commodity tax system

Government problem:

$$\max \int W(u)f(w)dw$$
 subject to
$$\int (w\ell - \sum x_i)f(w)dw = R, \text{ and } \dot{u} = -\ell u_\ell/w$$

Control variables x_2, \dots, x_n, ℓ with $x_1(x_2, \dots, x_n, \ell, u)$ State variable u (all variables vary continuously with w)

Solution

Hamiltonian function is:

$$\mathcal{H} = (W(u) + \lambda(w\ell - \sum x_i - R))f(w) - \zeta\ell u_\ell/w$$

FOC with respect to x_k :

$$-\lambda \left(1 + \frac{\partial x_1}{\partial x_k}\Big|_{u}\right) f(w) - \zeta \frac{\ell}{w} \left(u_{\ell k} + u_{\ell 1} \frac{\partial x_1}{\partial x_k}\Big|_{u}\right) = 0$$

Implementation

Nonlinear tax functions: $T(w\ell)$ and $t_i(x_i(w))$, with $t_1(x_1) = 0$

From household utility maximization (suppress type w):

$$\left. \frac{\partial x_1}{\partial x_k} \right|_{u} = -\frac{u_k}{u_1} = -(1+t'_k)$$

where $t'_k(x_k(w))$ is type-w's marginal tax rate on x_k

Interpretation

$$t_k' = \frac{\zeta \ell u_k}{\lambda w f} \left(\frac{u_{\ell k}}{u_k} - \frac{u_{\ell 1}}{u_1} \right)$$

or

$$\frac{t_k'}{q_k} = \frac{\zeta \ell \alpha}{\lambda w f} \left(\frac{d \mathsf{Log}(u_k/u_1)}{d \ell} \right)$$

Therefore,

- If $u = u(f(x_1, \dots, x_n), \ell)$, then $t'_k/q_k = 0$ for all $k = 1, \dots, n$ (A-S Theorem)
- $ightharpoonup t_k'/q_k > 0$ iff x_k more complementary with leisure than x_1
- ▶ Konishi-Laroque-Kaplow: If $u = u(f(x_1, \dots, x_n), \ell)$, starting from any nonlinear income tax and $t_i \neq t_j$, move to uniform commodity taxes and adjust income tax: Pareto-improving
- Note: This yields different tax rates for different persons, which can only be implemented by nonlinear commodity taxes; two-type case addresses this ⇒

The Direct-Indirect Tax Mix: Two-Type Case

The Setting

- ▶ Utility: $v^i(x, z, y) \equiv u(x, z, y/w_i)$, where x, z and leisure $h \ell$ are normal
- ▶ Government observes $y = w\ell$, not x and z
- Non-linear tax on y, indirect tax $t \geq 0$ on z
- ► Consumption $c \equiv y T(y) = x + (1+t)z = x + qz$

Households: Max
$$v^i(x, z, y)$$
 s.t. $x + qz = c = y - T(y)$

Disaggregate into two stages

- 1. Choose *y*, *c*
- 2. Allocate c to x and z

Stage 2: Choice of Consumption Bundle

Types 1 and 2

Given c_i, y_i , household $i \max_z v^i(c_i - qz_i, z_i, y_i)$

$$\implies$$
 Demand $z_i(q, c_i, y_i), \partial z_i/\partial y_i \gtrsim 0$

$$\implies \text{Indirect utility } w^i(q, c_i, y_i) \text{ with } w^i_q = -z_i v^i_x, w^i_c = v^i_x, w^i_y = v^i_y$$

 \implies Single crossing: $-w_y^1/w_c^1 > -w_y^2/w_c^2$

Mimicker: $\max_{\widehat{z}} \widehat{v}^2(c_1 - q\widehat{z}_2, \widehat{z}_2, y_1)$

$$\Longrightarrow \widehat{z}_2(q,c_1,y_1), \ \widehat{w}^2(q,c_1,y_1)$$

 \implies $\widehat{z}_2 > z_1$ if z more complementary with leisure than x, and vice versa

Stage 1: Choice of Labor Supply

Anticipating Stage 2, households choose c, y to maximize $w^i(q, c_i, y_i)$ s.t. $c_i = y_i - T(y_i)$

As above, we solve directly by letting government choose c_1, y_1, c_2, y_2 and t subject to budget and IC constraint

Households choose most preferred bundle (c_i, y_i)

Government Policy

Disaggregate into two stages:

- 1. Choice of an optimal non-linear income tax, given t
- 2. Welfare effect of changing t

Optimal Non-Linear Income Tax

Government problem, given t:

$$\max_{\{c_i,y_i\}} w^1(q,c_1,y_1) + \rho w^2(q,c_2,y_2)$$

subject to

$$w^2(q, c_2, y_2) \ge \widehat{w}^2(q, c_1, y_1)$$
 (\gamma)

$$n_1(y_1-c_1+tz_1)+n_2(y_2-c_2+tz_2)=0$$
 (λ)

FOCs yield

$$-\frac{w_y^2}{w_c^2} = \frac{1 + t\partial z_2/\partial y_2}{1 - t\partial z_2/\partial c_2}$$

$$\implies -w_v^2/w_c^2 \neq 1$$
 (marginal tax rate at the top $\neq 0$)

Marginal tax rate at the bottom still positive

Denote Maximum Value Function for this problem by W(t)

Indirect Tax Perturbations

Envelope theorem: $\partial W/\partial t = \partial \mathcal{L}/\partial t$

Using FOCs from optimal income tax problem:

$$\frac{\partial W}{\partial t} = \gamma \widehat{v}_x^2 (\widehat{z}_2 - z_1) + \lambda t \left(n_1 \frac{\partial \widetilde{z}_1}{\partial q} + n_2 \frac{\partial \widetilde{z}_2}{\partial q} \right)$$

where \widetilde{z}_i is the compensated for demand for z_i

at
$$t = 0$$
: $\frac{\partial W}{\partial t}\Big|_{t=0} > 0 \text{ if } \hat{z}_2 > z_1$

 $\implies t > 0$ if z is more complementary with leisure than is x

$$\implies$$
 Atkinson-Stiglitz Theorem: $t=0$ if $u(x,z,G)=u(f(x,z),\ell)$ (weak separability)

Results generalize to many goods and many ability-types

Optimal Indirect Tax

Choose to such that $\partial W/\partial t = 0$:

$$t^* = -\frac{\gamma \widehat{v}_x^2 (\widehat{z}_2 - z_1)}{\lambda t (n_1 \partial \widetilde{z}_1 / \partial q + n_2 \partial \widetilde{z}_2 / \partial q)}$$

(Edwards-Keen-Tuomala result)

- Denominator is an efficiency or deadweight loss term
- Numerator is a redistributive effect due to relaxing IC constraint

Intuition

- ▶ Suppose z and leisure are complements so $\hat{z}_2 > z_1$
- Start at t = 0, change dt > 0, adjust $dT_i = -z_i dt$ for (i = 1, 2)
- ▶ Then, $dw^1 = dw^2 = 0$, budget balances, and $d\widehat{w}^2$, 0, so IC relaxed
- Increase t until value of relaxing IC constraint just offset by marginal deadweight loss

Public Goods Provision: Marginal Cost of Public Funds

Utility: $v^i(c, y, G) \equiv u(c, y/w_i, G)$ where

$$\frac{v_G^i}{v_c^i} = \frac{u_G^i}{u_c^i} = MRS_{Gc}^i$$

Government problem:

$$\max_{\{c_i,y_i,G\}} v^1(c_1,y_1,G) + \rho[v^2(c_2,y_2,G) - \overline{v}^2] \quad \text{s.t.}$$

$$v^2(c_2, y_2, G) \ge \widehat{v}^2(c_1, y_1, G)$$
 (\gamma)

$$n_1(y_1 - c_1) + n_2(y_2 - c_2) = pG$$
 (λ)

First-order conditions: (2)–(5) plus

$$v_G^1 + \rho v_G^2 + \gamma v_G^2 - \gamma \hat{v}_G^2 - \lambda p = 0$$
 (6)

Interpretation

Optimal income tax structure unchanged

Substitute (2) and (4) into (6):

$$\textit{Modified Samuelson}: \quad \textit{n}_1 \frac{\textit{v}_G^1}{\textit{v}_c^1} + \textit{n}_2 \frac{\textit{v}_G^2}{\textit{v}_c^2} = \textit{p} + \frac{\gamma \widehat{\textit{v}}_c^2}{\lambda} \left[\frac{\widehat{\textit{v}}_G^2}{\widehat{\textit{v}}_c^2} - \frac{\textit{v}_G^1}{\textit{v}_c^1} \right]$$

$$\Longrightarrow \sum MRS_{Gc} > MRT_{Gc}$$
 if $\widehat{MRS}_{Gc}^2 > MRS_{Gc}^1$, and vice versa.

Intuition: Assume $\widehat{MRS}_{Gc}^2 < MRS_{Gc}^1$

- Start at $\sum MRS_{Gc} = MRT_{Gc}$
- ullet Change dG>0 with $dT_1=MRS_{Gc}^1$ and $dT_2=MRS_{Gc}^2$
- $\implies dv^1 = dv^2 = 0$, budget balances, $d\widehat{v}^2 < 0$ so IC relaxed.

Further Comments

- ▶ MCPF is less than 1 if $\widehat{MRS}_{GC}^2 < MRS_{GC}^1$, and vice versa
- ▶ Samuelson Rule applies if $u(c, \ell, G) = u(f(c, G), \ell)$ (weak separability in ℓ)
- **Proof** Reason: Type 1 and mimicker have same c, G but $\ell_1 > \widehat{\ell}^2$
- ▶ If labor is more complementary with G than with c, the MCPF< 1</p>
- **Proof** Reason: Higher ℓ entails higher MRS_{Gc} , so $\widehat{MRS}_{Gc}^2 < MRS_{Gc}^1$
- ▶ Kaplow: Even if income tax non-optimal, if preferences weakly separable, Samuelson condition should be satisfied if changes in G can be accompanied by adjustment in income tax liabilities

Environmental Externality: Pigouvian Taxation

Suppose z is now a dirty good

Utility:
$$u_x(x) + u_z(z) - y/w + e$$
 (quasilinear) where $e = \overline{e} - \delta(n_1z_1 + n_2z_2)$ (externality) $\delta =$ marginal damage

Nonlinear tax on y, excise tax t on z as before

Household choice of x, z, given c, y

$$\max_{\{z\}} u_x(c - qz) + u_z(z) - y/w + e \Rightarrow z(q, c)$$

 $\Rightarrow w(q, c, y) + e, \ w_q = -zu'_x, w_c = u'_x, w_y = 1/w$

For mimicker:
$$\hat{z}^2(q, c_1)$$
, $\hat{w}^2(q, c_1, y_1) + e$

Note: Given separability, $\hat{z}^2 = z_1$

First-Best Government Policy

$$\begin{aligned} & \textit{Max}_{\{c_i,y_i,t\}} \ \rho_1 \textit{n}_1 \textit{w}^1(q,c_1,y_1) + \rho_2 \textit{n}_2 \textit{w}^2(q,c_2,y_2) + \overline{\textit{n}}\textit{e} \\ & \textit{s.t.} \\ & \textit{n}_1 \big(y_1 - c_1 + t z_1(q,c_1) \big) + \textit{n}_2 \big(y_2 - c_2 + t z_2(q,c_2) \big) = R \\ & \textit{where } \overline{\textit{n}} = \rho_1 \textit{n}_1 + \rho_2 \textit{n}_2 \end{aligned}$$

FOCs yield:

$$\lambda^{o} = \rho_1 w_y^1 = \rho_2 w_y^2$$
$$t^{o} = \frac{n_1 \delta}{w_y^1} + \frac{n_2 \delta}{w_y^2}$$

- ⇒ Equality of marginal social utility of incomes, and
- ⇒ Pigouvian tax equals sum of marginal damages evaluated by households (no social welfare weights)

Second-Best Government Policy

$$Max_{\{c_i,y_i,t\}} \ \rho_1 n_1 w^1(q,c_1,y_1) + \rho_2 n_2 w^2(q,c_2,y_2) + \overline{n}e$$

s.t. $w^2(q,c_2,y_2) \ge \widehat{w}^2(q,c_1,y_1)$
 $n_1(y_1-c_1+tz_1(q,c_1)) + n_2(y_2-c_2+tz_2(q,c_2)) = R$

From the FOCs, we obtain, using $\hat{z}^2 = z_1$:

$$t = \frac{\overline{n}\delta}{\lambda} = \frac{(\rho_1 n_1 + \rho_2 n_2)\delta}{\lambda}$$

 \Rightarrow Pigouvian tax equals sum of marginal social damages (using social weights ρ_1, ρ_2) in terms of government revenue λ where

$$\lambda = \frac{n_1 \rho_1 w_y^1 + n_2 \rho_2 w_y^2}{n_1 + n_2}$$

Interpretation of Pigouvian Tax

Rewrite Pigouvian tax as:

$$t = \frac{n_1 \delta}{\lambda / \rho_1} + \frac{n_2 \delta}{\lambda / \rho_2}$$

Since $\rho_1 w_y^1 > \lambda > \rho_2 w_y^2$ (marginal social utilities of income),

$$\frac{\lambda}{\rho_1} < w_y^1, \quad \frac{\lambda}{\rho_2} > w_y^2$$

- ⇒ Pigouvian tax puts more weight on marginal damages to low-wage persons than high-wage persons (Sandmo)
- ⇒ Pigouvian tax plays some redistributive role

Note: The assumptions of Atkinson-Stiglitz otherwise apply here

Time-Using Consumption

Two illustrative cases:

- 1. Consumption time a perfect substitute for leisure
- 2. Consumption time a perfect substitute for labour

Standard results apply in former case, including Atkinson-Stiglitz Theorem

Focus on latter case

Consumption Time a Labour Substitute

Utility:
$$u(x, z, x_0) = u(x, z, h - \ell - a_x x - a_z z)$$

with $\ell = y/w$ and $c = x + qz$
Stage 2 problem of household i , given c_i, y_i , is:
Max- $v^i(c_i - qz_i, z_i, h - v_i/w_i - a_v(c_i - qz_i) - qv_i/w_i)$

$$\text{Max}_{z_i} \ v^i(c_i - qz_i, z_i, h - y_i/w_i - a_x(c_i - qz_i) - a_zz_i)$$

$$\Rightarrow z_i(q, c_i, y_i), w^i(q, c_i, y_i) \text{with } w^i_c = v^i_x - v^i_0 a_x, w^i_q = -w^i_c z_i, w^i_y = -v^i_0$$

Similarly for mimicker $\hat{z}_2(q, c_1, y_1), \hat{w}^2(q, c_1, y_1)$

Government maximizes
$$\rho_1 n_1 w^1(q, c_1, y_1) + \rho_2 n_2 w^2(q, c_2, y_2)$$
 s.t $w^2(q, c_2, y_2) \ge \widehat{w}^2(q, c_1, y_1)$ and $n_1(y_1 - c_1 + tz_1(q, c_1, y_1)) + n_2(y_2 - c_2 + tz_2(q, c_2, y_2)) = R$

using FOCs:
$$\frac{\partial \mathcal{L}}{\partial t} = \gamma \widehat{w}_c^2 (\widehat{z}_2 - z_1) + \lambda t \left(n_1 \frac{\partial \widetilde{z}_1}{\partial q} + n_2 \frac{\partial \widetilde{z}_2}{\partial q} \right)$$

Interpretation

$$\left. \frac{\partial \mathcal{L}}{\partial t} \right|_{t=0} \ \stackrel{\geq}{\geq} \ 0 \quad \text{as} \quad \widehat{z}_2 \ \stackrel{\geq}{\geq} \ z_1$$

Denote the slope of an indifference curve in goods space by:

$$\sigma(x,z.\ell) = -\frac{dz}{dx}\bigg|_{du=0}$$

Then,

$$\frac{\partial \sigma}{\partial \ell} \stackrel{>}{\geq} 0 \quad \iff \quad \hat{z}_2 \stackrel{>}{\geq} z_1$$

Assume weak separability:

$$u(f(x,z),x_0) = u(f(x,z),h-\ell-a_x x - a_z z)$$
 so:

$$\sigma(x,z,\ell) = \frac{u_f f_x - u_0 a_x}{u_f f_z - u_0 a_z}$$

Interpretation, cont'd

Differentiate $\sigma(x, z, \ell)$ with respect to ℓ :

$$\frac{\partial \sigma}{\partial \ell} = \frac{u_0 u_{f0} - u_f u_{00}}{(u_f f_z - u_0 a_z)^2} (a_z f_x - a_x f_z)$$

Since the first term on the rhs is positive if goods are normal,

$$\frac{\partial \sigma}{\partial \ell} \geq 0 \quad \iff \quad \frac{a_z}{a_x} \geq \frac{f_z}{f_x}$$

Thus, t > 0 if $a_z/a_x > f_z/f_x$, i.e., if the relative intensity of time use by z versus x exceeds the rate at which z can be substituted for x in the goods' sub-utility function.

Relatively high time intensity of use causes a higher tax rate to be imposed on a commodity

Non-Market Labour

Assumptions

- ▶ Market labour ℓ_m , non-market labour ℓ_n
- Utility: $u(f(x,z),\ell_m,\ell_n)$
- \triangleright Market income y_m observable

Case I: Household Production

- \triangleright ℓ_n produces unobserved, non-marketed goods
- ▶ A-S Theorem applies: common c; differences in ℓ ; x, z same
- Nonlinear income tax affected: both progressivity and possibly direction of incentive constraint

Case II: Informal Economy

- \blacktriangleright ℓ_n gives y_n to purchase x, z
- ► A-S Theorem violated: c differs for mimicker and type-1
- ▶ If y_n higher for type-2's, $\hat{z}_2 > z_1$, so t > 0