Intertemporal Optimal Taxation: Outline

Capital Income Taxation with Linear and Nonlinear Taxation

1. Representative Household

- Basic two-period model
- Capital income taxation?
- Time-consistent taxation
- Time-inconsistent preferences
- Bequests

2. Heterogenous Households: Nonlinear Taxation

- Basic two-period model
- Differences in discount rates
- Varying ability over time
- Uncertainty

Two-Period Optimal Commodity Taxation

- Present and future consumption: c_{1}, c_{2}
- Variable labor $\ell\left(=h-c_{0}\right)$ in present period
- Utility: $u\left(c_{1}, c_{2}, \ell\right)$
- Consumer prices: $1+\theta_{1}, 1+\theta_{2}, w\left(p_{1}=p_{2}=1\right)$
- Intertemporal budget constraint:

$$
\left(1+\theta_{1}\right) c_{1}+\frac{\left(1+\theta_{2}\right) c_{2}}{1+r}=w \ell \quad \text { or, } \quad q_{1} c_{1}+q_{2} c_{2}=w \ell
$$

where q_{1}, q_{2} are present value consumer prices

Tax Equivalences

Proportional commodity $\operatorname{tax} \theta_{1}=\theta_{2}=\theta$ equivalent to labor income tax t_{w} in present value terms
(though time profiles of revenues differ)
Budget constraint with an income tax at the rate θ_{m} :

$$
c_{1}+\frac{c_{2}}{1+\left(1-\theta_{m}\right) r}=\left(1-\theta_{m}\right) w \ell
$$

\Longrightarrow Equivalent to θ_{1}, θ_{2} with $\theta_{2}>\theta_{1}$
Any θ_{1}, θ_{2} can be replicated by

- Wage and capital income tax: t_{w}, t_{r} (dual income tax)
- Income and wage tax: t_{m}, t_{w}
- Income and value-added tax: t_{m}, θ

Optimal Two-Period Tax Structure

Given present value of government revenue
Three-commodity Ramsey tax applies:

$$
\frac{\tau_{1}}{\tau_{2}}=\frac{\theta_{1} /\left(1+\theta_{1}\right)}{\theta_{2} /\left(1+\theta_{2}\right)}=\frac{\varepsilon_{11}+\varepsilon_{22}+\varepsilon_{10}}{\varepsilon_{11}+\varepsilon_{22}+\varepsilon_{20}}
$$

$\Longrightarrow \tau_{1}=\tau_{2}$ or $\theta_{1}=\theta_{2}$ if $\varepsilon_{10}=\varepsilon_{20}$
$\Longrightarrow t_{w}$ optimal if $\varepsilon_{10}=\varepsilon_{20}$
$\Longrightarrow t_{w}$ and $t_{r}>0$ if $\varepsilon_{20}<\varepsilon_{10}$
(c_{2} more complementary with leisure than c_{1})
Generally, $t_{r} \neq t_{w}$
Case for schedular taxation (dual income tax)

OLG Extension: Atkinson-Sandmo

- Young supply labor, consume and save; old consume
- Population grows at rate n
- If $r>n$, increase in K increases steady state welfare
- In absence of intergenerational transfers, if $r>n$, may be preferable to augment Corlett-Hague tax with further tax on capital to increase, given form of utility function (Atkinson-Sandmo, King)
- Mitigated by use of consumption vs wage tax (Summers), or debt policy/intergenerational transfers

Four-Commodity Case

Household utility: $u\left(c_{1}, c_{2}, \ell_{1}, \ell_{2}\right)$
Two-period budget constraint with all taxes:

$$
\left(1+\theta_{1}\right) c_{1}+\frac{\left(1+\theta_{2}\right) c_{2}}{1+\left(1-\theta_{r}\right) r}=\left(1-\theta_{w 1}\right) w_{1} \ell_{1}+\frac{\left(1-\theta_{w 2}\right) w_{2} \ell_{2}}{1+\left(1-\theta_{r}\right) r}
$$

(Tax rates on labor and consumption can vary over time) Only 3 tax rates needed to control 3 relative prices Example 1: Commodity taxes zero $\left(\theta_{1}=\theta_{2}=0\right)$:

$$
c_{1}+\frac{c_{2}}{1+\left(1-\theta_{r}\right) r}=\left(1-\theta_{w 1}\right) w_{1} \ell_{1}+\frac{\left(1-\theta_{w 2}\right) w_{2} \ell_{2}}{1+\left(1-\theta_{r}\right) r}
$$

Example 2: Wage taxes zero $\left(t_{w 1}=t_{w 2}=0\right)$:

$$
\left(1+\theta_{1}\right) c_{1}+\frac{\left(1+\theta_{2}\right) c_{2}}{1+\left(1-\theta_{r}\right) r}=w_{1} \ell_{1}+\frac{w_{2} \ell_{2}}{1+\left(1-\theta_{r}\right) r}
$$

Generally, need either $\theta_{1} \neq \theta_{2}$ or $t_{w 1} \neq t_{w 2}$

Zero Capital Income Tax?

Case 1: $\theta_{1}=\theta_{2}=0$. No need for t_{r} to tax c_{1} relative to c_{2} if:
Expenditure function implicitly separable:

$$
e\left(A\left(q_{1}, q_{2}, u\right),\left(1-\theta_{w 1}\right) w_{1},\left(1-\theta_{w 1}\right) w_{2}, u\right)
$$

Example: $u\left(f\left(c_{1}, c_{2}\right), \ell_{1}, \ell_{2}\right)$ with $f(\cdot)$ homothetic
Case 2: $t_{w 1}=t_{w 2}=0$. No need for t_{r} to tax $w_{1} \ell_{1}$ versus $w_{2} \ell_{2}$ if:
Expenditure function implicitly separable:

$$
\left.e\left(q_{1}, q_{2}, u, B\left(w_{1}, w_{2}\right), u\right)\right)
$$

Generally, either θ_{i} or $t_{w i}$ must be time-varying
Suppose not \Longrightarrow

Chamley-Judd Zero-Capital Tax Case

Suppose

- Preferences are $u\left(c_{1}, \ell_{1}\right)+\beta u\left(c_{2}, \ell_{2}\right)$
- Wage rate is identical in both periods
- $\beta=1 /(1+r)$ (steady state)
\Longrightarrow Optimal $t_{r}=0, \theta_{1}=\theta_{2}, t_{w 1}=t_{w 2}$
$\Longrightarrow c_{1}=c_{2}$ and $\ell_{1}=\ell_{2}$ (Steady state)
Optimal for capital taxes to be zero in the long run in a representative-agent dynamic model

Proof of Zero t_{r}

All prices and taxes are in present value terms
Consumer prices:
$q_{1}=1, q_{2}=p_{2}+t_{c 2}, \omega_{1}=w_{1}+t_{w 1}, \omega_{2}=w_{2}+t_{w 2}$
Household: $\operatorname{Max} u\left(c_{1}, \ell_{1}\right)+\beta u\left(c_{2}, \ell_{2}\right)$ s.t. $c_{1}+q_{2} c_{2}=\omega_{1} \ell_{1}+\omega_{2} \ell_{2}$
FOCs c_{1}, c_{2} :
$u_{c}^{1}=\alpha, \quad \beta u_{c}^{2}=\alpha q_{2}$
FOCs ℓ_{1}, ℓ_{2} :

$$
u_{\ell}^{1}=-\alpha \omega_{1} \quad \beta u_{\ell}^{2}=-\alpha \omega_{2}
$$

Government Lagrangian:

$$
\begin{aligned}
\mathcal{L}=u\left(c_{1}, \ell_{1}\right) & +\beta u\left(c_{2}, \ell_{2}\right)+\lambda\left[w_{1} \ell_{1}+w_{2} \ell_{2}-c_{1}-p_{2} c_{2}-R\right] \\
& +\gamma\left[u_{c}^{1} c_{1}+\beta u_{c}^{2} c_{2}+u_{\ell}^{1} \ell_{1}+\beta u_{\ell}^{2} \ell_{2}\right]
\end{aligned}
$$

The first-order conditions are:

$$
\begin{gather*}
u_{c}^{1}-\lambda+\gamma\left[u_{c}^{1}+u_{c c}^{1} c_{1}+u_{\ell c}^{1} \ell_{1}\right]=0 \tag{1}\\
\beta u_{c}^{2}-\lambda p_{2}+\gamma \beta\left[u_{c}^{2}+u_{c c}^{2} c_{2}+u_{\ell \ell}^{2} \ell_{2}\right]=0 \tag{2}\\
u_{\ell}^{1}+\lambda w_{1}+\gamma\left[u_{\ell}^{1}+u_{c \ell}^{1} c_{1}+u_{\ell \ell}^{1} \ell_{1}\right]=0 \tag{1}\\
\beta u_{\ell}^{2}+\lambda w_{2}+\gamma \beta\left[u_{\ell}^{2}+u_{c \ell}^{2} c_{2}+u_{\ell \ell}^{2} \ell_{2}\right]=0 \tag{2}
\end{gather*}
$$

Proof of $t_{r}=0$, continued

Since $p_{2}=\beta\left(=1 /(1+r)\right.$ and $w_{2}=\beta w_{1}$, conditions $\left(c_{2}\right)$ and $\left(\ell_{2}\right)$ become:

$$
\begin{gather*}
u_{c}^{2}-\lambda+\gamma\left[u_{c}^{2}+u_{c c}^{2} c_{2}+u_{\ell c}^{2} \ell_{2}\right]=0 \tag{2}\\
u_{\ell}^{2}+\lambda w_{1}+\gamma\left[u_{\ell}^{2}+u_{c \ell}^{2} c_{2}+u_{\ell \ell}^{2} \ell_{2}\right]=0 \tag{2}
\end{gather*}
$$

$\left(c_{1}\right),\left(c_{2}^{\prime}\right),\left(\ell_{1}\right)$ and $\left(\ell_{2}^{\prime}\right)$ satisfied if $c_{1}=c_{2}$ and $\ell_{1}=\ell_{2}$ So, $u_{c}^{1}=u_{c}^{2}$ and $u_{\ell}^{1}=u_{\ell}^{2}$

Using household FOCs:

$$
\frac{u_{c}^{2}}{u_{c}^{1}}=\frac{q_{2}}{\beta}=1=\frac{p_{2}}{\beta}, \quad \frac{u_{\ell}^{2}}{u_{\ell}^{1}}=\frac{\omega_{2}}{\beta \omega_{1}}=1=\frac{w_{2}}{\beta w_{1}}
$$

$\Longrightarrow q_{2}=p_{2}$, so no tax on capital income
$\Longrightarrow q_{2} / q_{1}=w_{2} / w_{1}$, so labor taxes are same over time

Infinite-Horizon (Ramsey) Case

Note: In multi-period context, constant tax on capital equivalent to increasing tax on consumption over time (Bernheim): suggests a low capital tax rate, or a capital tax rate that varies over time

Utility; $u\left(x_{0}, \ell_{0}\right)+\sum_{t=1}^{\infty} \beta^{t} u\left(x_{t}, \ell_{t}\right)$
Taxes allowed on wages and capital

- Capital income tax $\longrightarrow 0$ in long run (Chamley-Judd)
- If $u(x, \ell)=x^{1-\sigma} /(1-\sigma)+v(\ell)$, capital tax zero for $t>0$
- Assumes representative agent model: but Ricardian equivalence violates biology/anthropology (Bernheim-Bagwell)
- Assumes full commitment

Multi-Period OLG Model

Two-period life-cycle

- Zero-capital tax no longer generally applies unless
- Steady state with no saving, or
- Utility $u(x, \ell)=x^{1-\sigma} /(1-\sigma)+v(\ell)$
- Liquidity constraints favor capital taxes (Hubbard-Judd)
- Reallocate tax liabilities to future periods
- Especially with wage uncertainty (Aiyagari)
- Excessive precautionary saving
- Simulations suggest high capital income tax (Conesa-Kitao-Krueger)

Time-Consistent Taxation

The Problem

- Taxpayers take long-run and short-run decisions
- Long-run decisions, like saving, create asset income that is fixed in the future
- Short-run decisions, like labor supply, create income in the same period
- Second-best optimal tax policy is determined before long-run decisions are taken
- Second-best tax policies are generally time-inconsistent: even benevolent governments will choose to change tax policies after long-run decisions are undertaken
- If households anticipate such re-optimizing, the outcome will be inferior to the second-best
- Governments may implement policies up front to mitigate that problem

General Consequences of Inability to Commit

- Excessive capital taxation (Fischer)
- Samaritan's dilemma (Bruce-Waldman, Coate): Government unable to help those who have chosen not to help themselves
- Mitigated by various measures
- Restriction to consumption taxation
- Incentives for asset accumulation
- Mandatory saving
- Under-investment in tax enforcement
- Social insurance
- Training

Commodity Tax Case: An Illustrative Model

Based on Fischer 1981 Rev Econ Dyn \& Control and Persson and Tabellini survey in Handbook of Public Economics

- Two periods, two goods $\left(c_{1}, c_{2}\right)$ and labor in period $2(\ell)$
- Quasilinear utility: $u\left(c_{1}\right)+c_{2}+h(1-\ell)$
- Time endowment 1 , wealth endowment 1
- Wage rate $=1$, interest rate $=0$
- Second-period taxes: t_{k}, t_{ℓ} on k, ℓ
- Fixed government revenue R

Consumer problem

$$
\begin{aligned}
& \operatorname{Max}_{\left\{c_{1}, \ell\right\}} u\left(c_{1}\right)+\left(1-t_{\ell}\right) \ell+\left(1-t_{k}\right)\left(1-c_{1}\right)+h(1-\ell) \\
& \quad \Longrightarrow c_{1}\left(1-t_{k}\right), c_{1}^{\prime}\left(1-t_{k}\right)<0, k\left(1-t_{k}\right)=1-c_{1}\left(1-t_{k}\right) \\
& \quad \Longrightarrow \ell\left(1-t_{\ell}\right), \ell^{\prime}\left(1-t_{\ell}\right)>0
\end{aligned}
$$

Indirect utility: $v\left(t_{k}, t_{\ell}\right)$, with $v_{t_{k}}=-\left(1-c_{1}\right), v_{t_{\ell}}=-\ell$

Government Policy

$\operatorname{Max}_{\left\{t_{k}, t_{\ell}\right\}} v\left(t_{k}, t_{\ell}\right)$ s.t. $\quad t_{\ell} \ell\left(1-t_{\ell}\right)+t_{k} k\left(1-t_{k}\right)=R$
Second-best tax: $\frac{t_{\ell}}{1-t_{\ell}}=\frac{\lambda-1}{\lambda} \frac{1}{\eta_{\ell}}>0, \frac{t_{k}}{1-t_{k}}=\frac{\lambda-1}{\lambda} \frac{1}{\eta_{k}}>0$
where $\eta_{\ell}=\left(1-t_{\ell}\right) \ell^{\prime} / \ell$ and $\eta_{k}=\left(1-t_{k}\right) k^{\prime} / k$

- Ex post, government will reoptimize by treating k as fixed and set t_{k} as high as possible (e.g. $t_{k}=1$)
- Households anticipate this and reduce saving
- Time-consistent equilibrium is inferior to second-best
- Government may react by providing ex ante saving incentives
- Inability to commit may be responsible for high capital income and wealth tax rates in practice
- Widespread use of investment and savings incentives
- Same phenomenon applies to human capital investment, investment by firms and housing

Time-Inconsistent Preferences

The Case of Sin Taxes (O'Donoghue and Rabin)

Assumptions

- Households consume x_{t}, z_{t} in period $t \in[0, T]$
- Utility: $u_{t}=v\left(x_{t}, \rho\right)-c\left(x_{t-1}, \gamma\right)+z_{t}, c_{x}, v_{x \rho}, c_{x \gamma}>0$
- Income m, producer prices unity
- Government imposes $\operatorname{tax} \theta$ on x, returns lump-sum revenue a
- Per period decision utility: $u^{*}(x, z)=v(x, \rho)-\beta c(x, \gamma)+z$
- Experienced utility: $u^{* *}(x, z)=v(x, \rho)-c(x, \gamma)+z$

Ideal Behaviour
$\operatorname{Max} u^{* *}(x, z)$ s.t. $x+z=m$

$$
v_{x}\left(x^{* *}, \rho\right)-c_{x}\left(x^{* *}, \gamma\right)-1=0, z^{* *}=m-x^{* *}
$$

Actual Behaviour

$$
\begin{gathered}
\operatorname{Max} u^{*}(x, z) \text { s.t. }(1+\theta) x+z=m+a \\
v_{x}\left(x^{*}(\theta), \rho\right)-\beta c_{x}\left(x^{*}(\theta), \gamma\right)=1+\theta \\
z^{*}(\theta, a)=m+a-(1+\theta) x^{*}(\theta)
\end{gathered}
$$

$$
\Longrightarrow
$$

Optimal Sin Taxes

When $t=0: x^{*}(0) \geq x^{* *}(0)$ as $\beta \leq 1$
Identical households
Optimal tax: $\theta^{* *}=(1-\beta) c_{x}\left(x^{* *}\right)$
\Longrightarrow Pigouvian tax on externality imposed on one's self
Heterogeneous households

1. If $\beta=1$ for all households, $\theta^{*}=0$
2. If $\beta<1$ for all, $\theta^{*}>0$, but first best not achieved due to heterogeneity in γ, ρ, β
3. If $\beta<1$ for some, $\beta=1$ for others, $\theta^{*}>0$: second-order effect of small tax if $\beta=1$, first-order effect if $\beta<1$

Note: Should the government interfere with consumer behaviour in the first place? (Paternalism or not)

Bequests

Motives

- Voluntary I: Altruism
- Voluntary II: Joy of giving
- Involuntary: Unintended
- Strategic: Requited transfer

Efficient Taxation

- Externality of voluntary transfers (benefits to donors and donees): Pigouvian subsidy on bequests
- Taxation of involuntary transfers fully efficient

Equitable Taxation

- Voluntary \& strategic transfers: tax donors and donees
- Double counting?
- Ricardian equivalence?
- Equality of opportunity arguments

Dynamic Optimal Nonlinear Taxation

The Basic Two-Period, Two-Type Case (Diamond)

- $c_{i}^{j}=$ consumption in period j by type $i(i, j=1,2)$
- $\ell_{i}^{1}=y_{i}^{1} / w_{i}$ labour supply by type i in period 1 only
- Utility: $u\left(c_{i}^{1}\right)-h\left(\ell_{i}^{1}\right)+\beta u\left(c_{i}^{2}\right)$
- Lifetime tax schedule (gov. observes c_{i}^{1}, c_{i}^{2}, or s)

Government problem (full commitment assumed)
$\max n_{1}\left(u\left(c_{1}^{1}\right)-h\left(\frac{y_{1}^{1}}{w_{1}}\right)+\beta u\left(c_{1}^{2}\right)\right)+n_{2}\left(u\left(c_{2}^{1}\right)-h\left(\frac{y_{2}^{1}}{w_{2}}\right)+\beta u\left(c_{2}^{2}\right)\right)$
s.t.

$$
\begin{array}{r}
n_{1}\left(y_{1}^{1}-c_{1}^{1}-\frac{c_{1}^{2}}{1+r}\right)+n_{2}\left(y_{2}^{1}-c_{2}^{1}-\frac{c_{2}^{2}}{1+r}\right)=R \\
u\left(c_{2}^{1}\right)-h\left(\frac{y_{2}^{1}}{w_{2}}\right)+\beta u\left(c_{2}^{2}\right) \geq u\left(c_{1}^{1}\right)-h\left(\frac{y_{1}^{1}}{w_{2}}\right)+\beta u\left(c_{1}^{2}\right)
\end{array}
$$

Basic Case, cont'd

Focus is on capital income taxation
First-order conditions on consumption:
$c_{1}^{1}: \quad\left(n_{1}-\gamma\right) u^{\prime}\left(c_{1}^{1}\right)-\lambda n_{1}=0$
$c_{1}^{2}: \quad\left(n_{1}-\gamma\right) \beta u^{\prime}\left(c_{1}^{2}\right)-\lambda n_{1} /(1+r)=0$
$c_{2}^{1}: \quad\left(n_{2}+\gamma\right) u^{\prime}\left(c_{2}^{1}\right)-\lambda n_{2}=0$
$c_{2}^{2}: \quad\left(n_{2}+\gamma\right) \beta u^{\prime}\left(c_{2}^{2}\right)-\lambda n_{2} /(1+r)=0$

$$
\frac{u^{\prime}\left(c_{1}^{1}\right)}{\beta u^{\prime}\left(c_{1}^{2}\right)}=\frac{u^{\prime}\left(c_{2}^{1}\right)}{\beta u^{\prime}\left(c_{2}^{2}\right)}=1+r
$$

\Longrightarrow No tax on capital income: A-S Theorem applies
Note: y_{2}^{j} conditions give zero marginal tax rate at the top

Extension 1: Different Utility Discount Rates

Suppose $\beta_{1} \neq \beta_{2}$, so government objective becomes:
$\max n_{1}\left(u\left(c_{1}^{1}\right)-h\left(\frac{y_{1}^{1}}{w_{1}}\right)+\beta_{1} u\left(c_{1}^{2}\right)\right)+n_{2}\left(u\left(c_{2}^{1}\right)-h\left(\frac{y_{2}^{1}}{w_{2}}\right)+\beta_{2} u\left(c_{2}^{2}\right)\right)$
and the incentive constraint is:

$$
u\left(c_{2}^{1}\right)-h\left(\frac{y_{2}^{1}}{w_{2}}\right)+\beta_{2} u\left(c_{2}^{2}\right) \geq u\left(c_{1}^{1}\right)-h\left(\frac{y_{1}^{1}}{w_{2}}\right)+\beta_{2} u\left(c_{1}^{2}\right)
$$

Note: Utilitarian objective problematic with different preferences: may want different welfare weight on two types

First-order conditions yield

$$
\frac{u^{\prime}\left(c_{2}^{1}\right)}{\beta_{2} u^{\prime}\left(c_{2}^{2}\right)}=1+r=\frac{n_{2}-\gamma}{n_{2}-\gamma \beta_{2} / \beta_{1}} \frac{u^{\prime}\left(c_{1}^{1}\right)}{\beta_{1} u^{\prime}\left(c_{1}^{2}\right)}
$$

Different Utility Discount Rates, cont'd

Diamond argues $\beta_{2}>\beta_{1}$ is plausible:
$\Longrightarrow \quad \frac{u^{\prime}\left(c_{1}^{1}\right)}{\beta_{1} u^{\prime}\left(c_{1}^{2}\right)}<1+r \quad$ if $\quad \beta_{2}>\beta_{1}$
\Longrightarrow Implicit tax on savings of low-wage types

Intuition: Taxing savings of low-wage types reduces their second-period consumption, makes it more costly for high-wage types to mimic, given their lower utility discounting

With linear tax on savings (dual income tax), case for positive linear tax since high-wage types have higher savings rates

Extension 2: Earnings in Both Periods:

Age-Dependent Taxation

- Wages in period j are w_{i}^{j} for $i, j=1,2$
- No uncertainty
- Identical preferences: $u\left(c^{1}\right)-h\left(\ell^{1}\right)+\beta u\left(c^{2}\right)-\beta h\left(\ell^{2}\right)$
- Government can commit to two-period tax system
- Fully nonlinear tax on present and future income
- Assume lifetime incentive constraint applies to type-2's

Government problem

$$
\max \sum_{i=1,2} n_{i}\left(u\left(c_{i}^{1}\right)-h\left(\frac{y_{i}^{1}}{w_{i}}\right)+\beta u\left(c_{i}^{2}\right)-\beta h\left(\frac{y_{i}^{2}}{w_{i}}\right)\right)
$$

subject to $\sum_{i=1,2} n_{i}\left(y_{i}^{1}+\frac{y_{i}^{2}}{1+r}-c_{i}^{1}-\frac{c_{i}^{2}}{1+r}\right)=R$
$u\left(c_{2}^{1}\right)-h\left(\frac{y_{2}^{1}}{w_{2}}\right)+\beta u\left(c_{2}^{2}\right)-\beta h\left(\frac{y_{2}^{2}}{w_{2}}\right) \geq u\left(c_{1}^{1}\right)-h\left(\frac{y_{1}^{1}}{w_{2}}\right)+\beta u\left(c_{1}^{2}\right)-\beta h\left(\frac{y_{1}^{2}}{w_{2}}\right)$

Tax Smoothing

The FOCs for c_{i}^{j}, y_{i}^{j} are:

$$
\begin{gather*}
\left(n_{2}+\gamma\right) u^{\prime}\left(c_{2}^{1}\right)=\lambda n_{2}=\frac{n_{2}+\gamma}{w_{2}^{1}} h^{\prime}\left(\frac{y_{2}^{1}}{w_{2}^{1}}\right) \tag{2}\\
\left(n_{2}+\gamma\right) \beta u^{\prime}\left(c_{2}^{2}\right)=\frac{\lambda n_{2}}{1+r}=\frac{n_{2}+\gamma}{w_{2}^{2}} \beta h^{\prime}\left(\frac{y_{2}^{2}}{w_{2}^{2}}\right) \tag{2}\\
\left(n_{1}-\gamma\right) u^{\prime}\left(c_{1}^{1}\right)=\lambda n_{1}=\frac{n_{1}}{w_{1}^{1}} h^{\prime}\left(\frac{y_{1}^{1}}{w_{1}^{1}}\right)-\frac{\gamma}{w_{2}^{1}} h^{\prime}\left(\frac{y_{1}^{1}}{w_{2}^{1}}\right) \tag{1}\\
\left(n_{1}-\gamma\right) \beta u^{\prime}\left(c_{1}^{2}\right)=\frac{\lambda n_{1}}{1+r}=\frac{n_{1}}{w_{1}^{2}} \beta h^{\prime}\left(\frac{y_{1}^{2}}{w_{1}^{2}}\right)-\frac{\gamma}{w_{2}^{2}} \beta h^{\prime}\left(\frac{y_{1}^{2}}{w_{2}^{2}}\right) \tag{1}\\
\Rightarrow \quad \frac{u^{\prime}\left(c_{1}^{1}\right)}{\beta u^{\prime}\left(c_{1}^{2}\right)}=\frac{u^{\prime}\left(c_{2}^{1}\right)}{\beta u^{\prime}\left(c_{2}^{2}\right)}=1+r
\end{gather*}
$$

No tax on savings

Tax Smoothing, cont'd

From conditions on c_{2}^{j}, y_{2}^{j} :

$$
\frac{h^{\prime}\left(y_{2}^{1} / w_{2}^{1}\right)}{u^{\prime}\left(c_{2}^{1}\right) w_{2}^{1}}=1=\frac{h^{\prime}\left(y_{2}^{2} / w_{2}^{2}\right)}{u^{\prime}\left(c_{2}^{2}\right) w_{2}^{2}} \quad \Rightarrow \quad \text { Tax smoothing for 2's }
$$

For type-1's, let $h^{\prime}\left(\ell_{i}\right)=\ell_{i}^{\sigma}$; conditions on y_{1}^{1}, y_{1}^{2} become:
$\frac{h^{\prime}\left(y_{1}^{1} / w_{1}^{1}\right) w_{1}^{2}}{h^{\prime}\left(y_{1}^{2} / w_{1}^{2}\right) w_{1}^{1}} \Delta=\beta(1+r)$, where $\Delta=\left(\frac{w_{2}^{2}}{w_{2}^{1}}\right)^{\sigma+1} \frac{n_{1} w_{2}^{1 \sigma+1}-\gamma w_{1}^{1^{\sigma+1}}}{n_{1} w_{2}^{2 \sigma+1}-\gamma w_{1}^{2 \sigma+1}}$
$\Rightarrow \quad$ Tax smoothing for 1 's if $\Delta=1$: i.e., if $w_{1}^{2} / w_{1}^{1}=w_{2}^{2} / w_{2}^{1}$ (identical age-earnings profiles, assuming $h^{\prime}\left(\ell_{i}\right)=\ell_{i}^{\sigma}$)
$\Rightarrow \quad$ If $w_{1}^{2} / w_{1}^{1}<w_{2}^{2} / w_{2}^{1}$, marginal tax rate for 1 's rises over time

Extension 3: Uncertain Future Wage Rates

- Two periods, 1 and 2
- Common wage w^{1} in period 1 , and either w_{1}^{2} or w_{2}^{2} in period 2
- Labor supply chosen after w revealed (incentive constraint in period 2 only)
- $n_{i}^{2}=$ distribution of i 's in period 2
- Expected utility:

$$
u\left(c^{1}\right)-h\left(y^{1} / w^{1}\right)+\beta \sum_{i=1,2} n_{i}^{2}\left(u\left(c_{i}^{2}\right)-h\left(y_{i}^{2} / w_{i}^{2}\right)\right)
$$

Government problem:

$$
\begin{gather*}
\max u\left(c^{1}\right)-h\left(\frac{y^{1}}{w^{1}}\right)+\beta \sum_{i=1,2} n_{i}^{2}\left[u\left(c_{i}^{2}\right)-h\left(\frac{y_{i}^{2}}{w_{i}^{2}}\right)\right] \text { s.t. } \\
y^{1}-c^{1}+(1+r)^{-1} \sum_{i=1,2} n_{i}^{2}\left(y_{i}^{2}-c_{i}^{2}\right) \geq G \\
u\left(c_{2}^{2}\right)-h\left(\frac{y_{2}^{2}}{w_{2}^{2}}\right) \geq u\left(c_{1}^{2}\right)-h\left(\frac{y_{1}^{2}}{w_{2}^{2}}\right)
\end{gather*}
$$

Tax on Savings with Uncertain Wage Rates

FOCs on $c^{1}, c_{i}^{2}: \quad u^{\prime}\left(c^{1}\right)=\lambda$

$$
\begin{gathered}
\beta\left(n_{1}^{2}-\gamma\right) u^{\prime}\left(c_{1}^{2}\right)-\frac{\lambda n_{1}^{2}}{1+r}=0 \\
\beta\left(n_{2}^{2}+\gamma\right) u^{\prime}\left(c_{2}^{2}\right)=\frac{\lambda n_{2}^{2}}{1+r}=0 \\
\Longrightarrow \quad u^{\prime}\left(c^{1}\right)=\beta(1+r)\left[\sum_{i} n_{i}^{2} u^{\prime}\left(c_{i}^{2}\right)-\gamma\left(u^{\prime}\left(c_{1}^{2}\right)-u^{\prime}\left(c_{2}^{2}\right)\right)\right]
\end{gathered}
$$

If incentive constraint binding, $c_{2}^{2}>c_{1}^{2}$, so

$$
\frac{u^{\prime}\left(c^{1}\right)}{\beta \sum_{i} n_{i}^{2} u^{\prime}\left(c_{i}^{2}\right)}<1+r \quad \Longrightarrow \quad \text { Tax on savings }
$$

(Reducing saving makes it harder for 2's to mimic 1's in period 2)

Uncertainty and Earnings Tax Progressivity

- Suppose labor supplied before uncertainty resolved
- Income tax progressivity affected
- Progressivity higher or lower with ex post vs ex ante uncertainty (Eaton-Rosen) \Rightarrow Progressivity enhances insurance but reduces precautionary labor supply:
- Depends on balance between coefficient of risk aversion and coefficient of prudence (Low-Maldoom):

$$
P(x)=-\frac{u^{\prime \prime \prime}(x)}{u^{\prime \prime}(x)} / \frac{u^{\prime \prime}(x)}{u^{\prime}(x)}: \quad P(x) \uparrow \Rightarrow \operatorname{Prog} \downarrow
$$

- Social insurance may induce socially-beneficial risk-taking (Sinn): enhance case for progressivity
- To extent that risk is insurable, less needs to be done via income tax (Cremer-Pestieau)

Wage Uncertainty and Goods Taxation

Cremer and Gahvari (1995): Wage rates uncertain and some goods must purchased before wage rate revealed, other goods and labor supply must chosen after wage rate revealed

- Assume weak separability applies
- No differential tax on goods purchased ex post
- Lower tax on goods purchased ex ante: Makes it more difficult for ex post high-wage types to mimic low-wage types
- Provides justification for preferential treatment of housing and other consumer durables

Other Extensions

- Quantity controls: In-kind transfers
- Quantity controls: Workfare
- Price controls: Minimum wage
- Information acquisition: Tagging
- Information acquisition: Monitoring
- Multiple dimensions: Risk, family size
- Tax evasion, corruption, extortion
- Commitment issues
- Human capital accumulation
- Involuntary unemployment: search and unemployment insurance

Policy Implications from Optimal Tax Theory

- Atkinson-Stiglitz theorem: broad-based VAT
- Case for separate capital income tax: dual income tax
- Production efficiency and case for VAT
- Progressivity
- Extensive margin and low-wage subsidy
- Equality of opportunity: inheritance tax, targeted child transfers
- Behavioral economics and paternalistic taxation
- Behavioral economics and mandatory savings
- Political economy?

